A Performance Analysis of Unsupervised Change Detection Method for Hyper spectral Images

نویسنده

  • Neha Kumari
چکیده

The most significant recent breakthrough in remote sensing has been the development of hyper spectral sensors and software to analyze the resulting image data. Fifteen years ago only the spectral remote sensing experts had access to hyper spectral images or many software tools to take advantage of such images. Over the past decade hyper spectral image analysis has matured into one of the most powerful and fastest growing technologies in the field of remote sensing. The “hyper” in hyper spectral means “over” as in “too many” and refers to the large number of measured wavelength bands. Hyper spectral images are mainly spectrally over determined, which means that they provide ample spectral information to identify and distinguish spectrally unique materials. Hyper spectral imagery provides the potential for more accurate and detailed information extraction than possible with any other type of remotely sensed data. In order to detect the changes that may occur due to various natural hazards like earthquake, floods or many more in several areas, there is an efficient way to identify these changes without visiting the sites by analyzing the changes through remote sensing satellites like Landsat, SPOT etc. which provides digital images of hyper spectral images and through change detection algorithms these changes may become easy to detect. To complete this goal, feature extraction is considered as an essential-weapon to analyze an image properly. In this paper, different digital lesion images have been analyzed based on unsupervised image acquisition, pre-processing, and dimension reduction techniques.. After this, a graphical user interface and independent component analysis has been designed for the probability detection and then a comprehensive discussion has been explored based on the obtained results. Keywords— Hyper spectral image analysis, Image Acquisition, Feature Extraction, Graphical User Interface, target detection, remote sensing, change detection algorithms. __________________________________________________*****_________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

Change detection from satellite images based on optimal asymmetric thresholding the difference image

As a process to detect changes in land cover by using multi-temporal satellite images, change detection is one of the practical subjects in field of remote sensing. Any progress on this issue increase the accuracy of results as well as facilitating and accelerating the analysis of multi-temporal data and reducing the cost of producing geospatial information. In this study, an unsupervised chang...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014